proconlib

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub KodamaD/proconlib

:heavy_check_mark: test/queue_aggregation.test.cpp

Depends on

Code

#define PROBLEM "https://judge.yosupo.jp/problem/queue_operate_all_composite"
#include "../container/queue_aggregation.cpp"
#include <iostream>
#include "../math/static_modint.cpp"
#include "../utility/int_alias.cpp"
#include "../traits/affine_composite_monoid.cpp"

using Fp = Modint998244353;

int main() {
    std::ios_base::sync_with_stdio(false);
    std::cin.tie(nullptr);
    int Q;
    std::cin >> Q;
    QueueAggregation<AffineCompositeMonoid<Fp>> que;
    while (Q--) {
        int t;
        std::cin >> t;
        if (t == 0) {
            u32 a, b;
            std::cin >> a >> b;
            que.push(Affine<Fp>(Fp(a), Fp(b)));
        } else if (t == 1) {
            que.pop();
        } else {
            u32 x;
            std::cin >> x;
            std::cout << que.fold().eval(Fp(x)) << '\n';
        }
    }
}
#line 1 "test/queue_aggregation.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/queue_operate_all_composite"
#line 2 "traits/reversed_monoid.cpp"

template <class M> struct ReversedMonoid {
    using Type = typename M::Type;
    static constexpr Type identity() { return M::identity(); }
    static constexpr Type operation(const Type& l, const Type& r) { return M::operation(r, l); }
};
#line 2 "container/stack_aggregation.cpp"
#include <cassert>
#include <vector>

template <class M> class StackAggregation {
    using T = typename M::Type;

    struct Node {
        T value, fold;
        explicit Node(const T value, const T fold) : value(value), fold(fold) {}
    };

    std::vector<Node> st;

  public:
    StackAggregation() = default;

    bool empty() const { return st.empty(); }
    T top() const {
        assert(!empty());
        return st.back().value;
    }
    T fold() const { return st.empty() ? M::identity() : st.back().fold; }

    void push(const T& x) { st.emplace_back(x, M::operation(fold(), x)); }
    void pop() {
        assert(!empty());
        st.pop_back();
    }
};
#line 4 "container/queue_aggregation.cpp"

template <class M> class QueueAggregation {
    using T = typename M::Type;
    using R = ReversedMonoid<M>;

    StackAggregation<R> front_st;
    StackAggregation<M> back_st;

  public:
    QueueAggregation() = default;

    bool empty() const { return front_st.empty(); }
    T fold() const { return M::operation(front_st.fold(), back_st.fold()); }

    void push(const T& x) {
        if (empty())
            front_st.push(x);
        else
            back_st.push(x);
    }
    void pop() {
        assert(!empty());
        front_st.pop();
        if (front_st.empty()) {
            while (!back_st.empty()) {
                front_st.push(back_st.top());
                back_st.pop();
            }
        }
    }
};
#line 3 "test/queue_aggregation.test.cpp"
#include <iostream>
#line 2 "math/static_modint.cpp"
#include <ostream>
#include <type_traits>
#line 2 "utility/int_alias.cpp"
#include <cstdint>

using i32 = std::int32_t;
using u32 = std::uint32_t;
using i64 = std::int64_t;
using u64 = std::uint64_t;
using i128 = __int128_t;
using u128 = __uint128_t;
#line 3 "math/rem_euclid.cpp"

template <class T> constexpr T rem_euclid(T value, const T& mod) {
    assert(mod > 0);
    return (value %= mod) >= 0 ? value : value + mod;
}
#line 2 "math/totient.cpp"

template <class T> constexpr T totient(T x) {
    T ret = x;
    for (T i = 2; i * i <= x; ++i) {
        if (x % i == 0) {
            ret /= i;
            ret *= i - 1;
            while (x % i == 0) x /= i;
        }
    }
    if (x > 1) {
        ret /= x;
        ret *= x - 1;
    }
    return ret;
}
#line 7 "math/static_modint.cpp"

template <u32 MOD, std::enable_if_t<((u32)1 <= MOD and MOD <= ((u32)1 << 31))>* = nullptr> class StaticModint {
    using Self = StaticModint;

    static inline constexpr u32 PHI = totient(MOD);
    u32 v;

  public:
    static constexpr u32 mod() noexcept { return MOD; }

    template <class T, std::enable_if_t<std::is_integral_v<T>>* = nullptr>
    static constexpr T normalize(const T& x) noexcept {
        return rem_euclid<std::common_type_t<T, i64>>(x, MOD);
    }

    constexpr StaticModint() noexcept : v(0) {}
    template <class T> constexpr StaticModint(const T& x) noexcept : v(normalize(x)) {}
    template <class T> static constexpr Self raw(const T& x) noexcept {
        Self ret;
        ret.v = x;
        return ret;
    }

    constexpr u32 val() const noexcept { return v; }
    constexpr Self neg() const noexcept { return raw(v == 0 ? 0 : MOD - v); }
    constexpr Self inv() const noexcept { return pow(PHI - 1); }
    constexpr Self pow(u64 exp) const noexcept {
        Self ret(1), mult(*this);
        for (; exp > 0; exp >>= 1) {
            if (exp & 1) ret *= mult;
            mult *= mult;
        }
        return ret;
    }

    constexpr Self operator-() const noexcept { return neg(); }
    constexpr Self operator~() const noexcept { return inv(); }

    constexpr Self operator+(const Self& rhs) const noexcept { return Self(*this) += rhs; }
    constexpr Self& operator+=(const Self& rhs) noexcept {
        if ((v += rhs.v) >= MOD) v -= MOD;
        return *this;
    }

    constexpr Self operator-(const Self& rhs) const noexcept { return Self(*this) -= rhs; }
    constexpr Self& operator-=(const Self& rhs) noexcept {
        if (v < rhs.v) v += MOD;
        v -= rhs.v;
        return *this;
    }

    constexpr Self operator*(const Self& rhs) const noexcept { return Self(*this) *= rhs; }
    constexpr Self& operator*=(const Self& rhs) noexcept {
        v = (u64)v * rhs.v % MOD;
        return *this;
    }

    constexpr Self operator/(const Self& rhs) const noexcept { return Self(*this) /= rhs; }
    constexpr Self& operator/=(const Self& rhs) noexcept { return *this *= rhs.inv(); }

    constexpr bool operator==(const Self& rhs) const noexcept { return v == rhs.v; }
    constexpr bool operator!=(const Self& rhs) const noexcept { return v != rhs.v; }
    friend std::ostream& operator<<(std::ostream& stream, const Self& rhs) { return stream << rhs.v; }
};

using Modint1000000007 = StaticModint<1000000007>;
using Modint998244353 = StaticModint<998244353>;
#line 2 "traits/affine_composite_monoid.cpp"

template <class T> struct Affine {
    T a, b;
    constexpr Affine(const T& a = 1, const T& b = 0) : a(a), b(b) {}
    constexpr T eval(const T& x) const { return a * x + b; }
    constexpr Affine operator+(const Affine& other) const { return affine(a + other.a, b + other.b); }
    constexpr Affine composite(const Affine& other) const { return Affine(a * other.a, b * other.a + other.b); }
};

template <class T> struct AffineCompositeMonoid {
    using Type = Affine<T>;
    static constexpr Type identity() { return Type(); }
    static constexpr Type operation(const Type& l, const Type& r) noexcept { return l.composite(r); }
};
#line 7 "test/queue_aggregation.test.cpp"

using Fp = Modint998244353;

int main() {
    std::ios_base::sync_with_stdio(false);
    std::cin.tie(nullptr);
    int Q;
    std::cin >> Q;
    QueueAggregation<AffineCompositeMonoid<Fp>> que;
    while (Q--) {
        int t;
        std::cin >> t;
        if (t == 0) {
            u32 a, b;
            std::cin >> a >> b;
            que.push(Affine<Fp>(Fp(a), Fp(b)));
        } else if (t == 1) {
            que.pop();
        } else {
            u32 x;
            std::cin >> x;
            std::cout << que.fold().eval(Fp(x)) << '\n';
        }
    }
}
Back to top page