proconlib

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub KodamaD/proconlib

:heavy_check_mark: test/larsch.test.cpp

Depends on

Code

#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/challenges/sources/UOA/UAPC/3086?year=2020"
#include "../algorithm/larsch.cpp"
#include "../container/segment_tree.cpp"
#include "../traits/max_monoid.cpp"
#include "../utility/infty.cpp"
#include "../utility/int_alias.cpp"
#include "../utility/rep.cpp"
#include <iostream>
#include <vector>

int main() {
    int N, L;
    std::cin >> N >> L;
    std::vector<std::optional<i64>> A(N);
    for (auto& x : A) {
        i64 t;
        std::cin >> t;
        x = t;
    }
    SegmentTree<MaxMonoid<i64>> seg(A);
    std::vector<i64> dp(N + 1);
    const auto transit = [&](int i, int j) {
        i += 1;
        if (j + L > i) return -INFTY<i64>;
        return dp[j] + *seg.fold(j, i);
    };
    CompLARSCH<i64, std::greater<i64>> larsch(N, transit);
    for (const auto i : rep(0, N)) {
        larsch.add_column();
        dp[i + 1] = transit(i, larsch.get_argmin());
    }
    std::cout << dp[N] << '\n';
    return 0;
}
#line 1 "test/larsch.test.cpp"
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/challenges/sources/UOA/UAPC/3086?year=2020"
#line 2 "algorithm/larsch.cpp"
#include <algorithm>
#include <cassert>
#include <functional>
#include <memory>
#include <vector>

class LARSCH {
    using Select = std::function<bool(int, int, int)>;
    struct ReduceRow;
    struct ReduceCol;

    struct ReduceRow {
        int n, m, x, k;
        Select f;
        std::unique_ptr<ReduceCol> rec;

        explicit ReduceRow(const int n_, const Select& f_) : n(n_), m(0), x(0), k(0), f(f_), rec() {
            const int h = n / 2;
            if (h != 0) rec = std::make_unique<ReduceCol>(h, [&](int i, int j, int k) { return f(2 * i + 1, j, k); });
        }

        void add_column() {
            if ((x & 1) and f(x, k, m)) k = m;
            if (rec) rec->add_column();
            m += 1;
        }

        int get_argmin() {
            if (x & 1) {
                x += 1;
                return k;
            } else {
                int ret = k;
                if (x + 1 == n)
                    k = m - 1;
                else
                    k = rec->get_argmin();
                for (int j = ret + 1; j <= k; j += 1)
                    if (f(x, ret, j)) ret = j;
                x += 1;
                return ret;
            }
        }
    };

    struct ReduceCol {
        int n, m, x, y;
        std::vector<int> c;
        Select f;
        ReduceRow rec;

        explicit ReduceCol(const int n_, const Select& f_)
            : n(n_), m(0), x(0), y(0), c(), f(f_), rec(n_, [&](int i, int j, int k) { return f(i, c[j], c[k]); }) {}

        void add_column() {
            while (true) {
                const int i = c.size();
                if (i <= x or !f(i - 1, c[i - 1], m)) break;
                c.pop_back();
            }
            if ((int)c.size() != n) c.push_back(m);
            m += 1;
        }

        int get_argmin() {
            x += 1;
            while (y < std::min(x, (int)c.size())) {
                rec.add_column();
                y += 1;
            }
            return c[rec.get_argmin()];
        }
    };

    int row, col;
    ReduceRow machine;

  public:
    explicit LARSCH(const int n, const Select& f) : row(n), col(0), machine(n, f) {}

    void add_column() {
        assert(row != 0);
        col += 1;
        machine.add_column();
    }

    int get_argmin() {
        assert(row != 0 and col != 0);
        row -= 1;
        return machine.get_argmin();
    }
};

template <class T, class Comp = std::less<T>> class CompLARSCH {
    std::function<T(int, int)> func;
    Comp comp;
    LARSCH machine;

  public:
    explicit CompLARSCH(const int n, const std::function<T(int, int)>& f, const Comp& c = Comp())
        : func(f), comp(c), machine(n, [&](int i, int j, int k) { return comp(func(i, k), func(i, j)); }) {}

    void add_column() { machine.add_column(); }

    int get_argmin() { return machine.get_argmin(); }
};
#line 2 "internal/enable_avx2.cpp"

#ifdef ENABLE_AVX2
#define TARGET_AVX2 __attribute__((target("avx2")))
#else
#define TARGET_AVX2
#endif
#line 2 "utility/int_alias.cpp"
#include <cstdint>

using i32 = std::int32_t;
using u32 = std::uint32_t;
using i64 = std::int64_t;
using u64 = std::uint64_t;
using i128 = __int128_t;
using u128 = __uint128_t;
#line 4 "utility/countl_zero.cpp"

TARGET_AVX2 constexpr int countl_zero(u64 x) {
#ifdef __GNUC__
    return x == 0 ? 64 : __builtin_clzll(x);
#else
    x |= x >> 1;
    x |= x >> 2;
    x |= x >> 4;
    x |= x >> 8;
    x |= x >> 16;
    x |= x >> 32;
    return 64 - countr_zero(~x);
#endif
}
#line 4 "utility/bit_width.cpp"

TARGET_AVX2 constexpr int bit_width(const u64 x) { return 64 - countl_zero(x); }
#line 5 "utility/ceil_log2.cpp"

TARGET_AVX2 constexpr int ceil_log2(const u64 x) {
#ifdef __GNUC__
    return x == 0 ? 0 : bit_width(x - 1);
#else
    int e = 0;
    while (((u64)1 << e) < x) ++e;
    return e;
#endif
}
#line 3 "utility/rep.cpp"

class Range {
    struct Iter {
        int itr;
        constexpr Iter(const int pos) noexcept : itr(pos) {}
        constexpr void operator++() noexcept { ++itr; }
        constexpr bool operator!=(const Iter& other) const noexcept { return itr != other.itr; }
        constexpr int operator*() const noexcept { return itr; }
    };
    const Iter first, last;

  public:
    explicit constexpr Range(const int first, const int last) noexcept : first(first), last(std::max(first, last)) {}
    constexpr Iter begin() const noexcept { return first; }
    constexpr Iter end() const noexcept { return last; }
};

constexpr Range rep(const int l, const int r) noexcept { return Range(l, r); }
constexpr Range rep(const int n) noexcept { return Range(0, n); }
#line 3 "utility/revrep.cpp"

class ReversedRange {
    struct Iter {
        int itr;
        constexpr Iter(const int pos) noexcept : itr(pos) {}
        constexpr void operator++() noexcept { --itr; }
        constexpr bool operator!=(const Iter& other) const noexcept { return itr != other.itr; }
        constexpr int operator*() const noexcept { return itr; }
    };
    const Iter first, last;

  public:
    explicit constexpr ReversedRange(const int first, const int last) noexcept
        : first(last - 1), last(std::min(first, last) - 1) {}
    constexpr Iter begin() const noexcept { return first; }
    constexpr Iter end() const noexcept { return last; }
};

constexpr ReversedRange revrep(const int l, const int r) noexcept { return ReversedRange(l, r); }
constexpr ReversedRange revrep(const int n) noexcept { return ReversedRange(0, n); }
#line 7 "container/segment_tree.cpp"

template <class M> class SegmentTree {
    using T = typename M::Type;
    int internal_size, seg_size;
    std::vector<T> data;

    void fetch(const int k) { data[k] = M::operation(data[2 * k], data[2 * k + 1]); }

  public:
    explicit SegmentTree(const int size = 0, const T& value = M::identity())
        : SegmentTree(std::vector<T>(size, value)) {}
    explicit SegmentTree(const std::vector<T>& vec) : internal_size(vec.size()) {
        seg_size = 1 << ceil_log2(internal_size);
        data = std::vector<T>(2 * seg_size, M::identity());
        for (const int i : rep(internal_size)) data[seg_size + i] = vec[i];
        for (const int i : revrep(1, seg_size)) fetch(i);
    }

    int size() const { return internal_size; }

    void assign(int i, const T& value) {
        assert(0 <= i and i < internal_size);
        i += seg_size;
        data[i] = value;
        while (i > 1) {
            i >>= 1;
            fetch(i);
        }
    }

    T fold() const { return data[1]; }
    T fold(int l, int r) const {
        assert(0 <= l and l <= r and r <= internal_size);
        l += seg_size;
        r += seg_size;
        T ret_l = M::identity(), ret_r = M::identity();
        while (l < r) {
            if (l & 1) ret_l = M::operation(ret_l, data[l++]);
            if (r & 1) ret_r = M::operation(data[--r], ret_r);
            l >>= 1;
            r >>= 1;
        }
        return M::operation(ret_l, ret_r);
    }

    template <class F> int max_right(int l, const F& f) const {
        assert(0 <= l and l <= internal_size);
        assert(f(M::identity()));
        if (l == internal_size) return internal_size;
        l += seg_size;
        T sum = M::identity();
        do {
            while (!(l & 1)) l >>= 1;
            if (!f(M::operation(sum, data[l]))) {
                while (l < seg_size) {
                    l = 2 * l;
                    if (f(M::operation(sum, data[l]))) sum = M::operation(sum, data[l++]);
                }
                return l - seg_size;
            }
            sum = M::operation(sum, data[l++]);
        } while ((l & -l) != l);
        return internal_size;
    }

    template <class F> int min_left(int r, const F& f) const {
        assert(0 <= r and r <= internal_size);
        assert(f(M::identity()));
        if (r == 0) return 0;
        r += seg_size;
        T sum = M::identity();
        do {
            r -= 1;
            while (r > 1 and (r & 1)) r >>= 1;
            if (!f(M::operation(data[r], sum))) {
                while (r < seg_size) {
                    r = 2 * r + 1;
                    if (f(M::operation(data[r], sum))) sum = M::operation(data[r--], sum);
                }
                return r + 1 - seg_size;
            }
            sum = M::operation(data[r], sum);
        } while ((r & -r) != r);
        return 0;
    }
};
#line 2 "traits/optional_monoid.cpp"
#include <optional>
#include <utility>

template <class S> struct OptionalMonoid {
    using Type = std::optional<typename S::Type>;
    static constexpr Type identity() { return std::nullopt; }
    static constexpr Type operation(const Type& l, const Type& r) {
        if (!l) return r;
        if (!r) return l;
        return Type(std::in_place, S::operation(*l, *r));
    }
};
#line 4 "traits/max_monoid.cpp"

template <class T> struct MaxSemiGroup {
    using Type = T;
    static constexpr T operation(const T& l, const T& r) { return std::max(l, r); }
};

template <class T> using MaxMonoid = OptionalMonoid<MaxSemiGroup<T>>;
#line 2 "utility/infty.cpp"
#include <limits>

template <class T, T Div = 2> constexpr T INFTY = std::numeric_limits<T>::max() / Div;
#line 8 "test/larsch.test.cpp"
#include <iostream>
#line 10 "test/larsch.test.cpp"

int main() {
    int N, L;
    std::cin >> N >> L;
    std::vector<std::optional<i64>> A(N);
    for (auto& x : A) {
        i64 t;
        std::cin >> t;
        x = t;
    }
    SegmentTree<MaxMonoid<i64>> seg(A);
    std::vector<i64> dp(N + 1);
    const auto transit = [&](int i, int j) {
        i += 1;
        if (j + L > i) return -INFTY<i64>;
        return dp[j] + *seg.fold(j, i);
    };
    CompLARSCH<i64, std::greater<i64>> larsch(N, transit);
    for (const auto i : rep(0, N)) {
        larsch.add_column();
        dp[i + 1] = transit(i, larsch.get_argmin());
    }
    std::cout << dp[N] << '\n';
    return 0;
}
Back to top page