proconlib

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub KodamaD/proconlib

:heavy_check_mark: container/lazy_segment_tree.cpp

Depends on

Verified with

Code

#pragma once
#include <cassert>
#include <vector>
#include "../utility/ceil_log2.cpp"
#include "../utility/countr_zero.cpp"
#include "../utility/rep.cpp"
#include "../utility/revrep.cpp"

template <class A> class LazySegmentTree {
    using M = typename A::Monoid;
    using E = typename A::Effector;
    using T = typename M::Type;
    using U = typename E::Type;
    int internal_size, logn, seg_size;
    std::vector<T> data;
    std::vector<U> lazy;

    void fetch(const int k) { data[k] = M::operation(data[2 * k], data[2 * k + 1]); }
    void apply(const int k, const U& e) {
        data[k] = A::operation(data[k], e);
        if (k < seg_size) lazy[k] = E::operation(lazy[k], e);
    }
    void flush(const int k) {
        apply(2 * k, lazy[k]);
        apply(2 * k + 1, lazy[k]);
        lazy[k] = E::identity();
    }

    void push(const int k) {
        for (const int d : revrep(countr_zero(k) + 1, logn + 1)) flush(k >> d);
    }
    void pull(int k) {
        for (k >>= countr_zero(k); k > 1;) fetch(k >>= 1);
    }

  public:
    explicit LazySegmentTree(const int size = 0, const T& value = M::identity())
        : LazySegmentTree(std::vector<T>(size, value)) {}
    explicit LazySegmentTree(const std::vector<T>& vec) : internal_size(vec.size()) {
        logn = ceil_log2(internal_size);
        seg_size = 1 << logn;
        data = std::vector<T>(2 * seg_size, M::identity());
        lazy = std::vector<U>(seg_size, E::identity());
        for (const int i : rep(internal_size)) data[seg_size + i] = vec[i];
        for (const int i : revrep(1, seg_size)) fetch(i);
    }

    int size() const { return internal_size; }

    void assign(int i, const T& value) {
        assert(0 <= i and i < internal_size);
        i += seg_size;
        for (const int d : revrep(1, logn + 1)) flush(i >> d);
        data[i] = value;
        for (const int d : rep(1, logn + 1)) fetch(i >> d);
    }
    void operate(int l, int r, const U& e) {
        assert(0 <= l and l <= r and r <= internal_size);
        l += seg_size;
        r += seg_size;
        push(l);
        push(r);
        for (int l0 = l, r0 = r; l0 < r0; l0 >>= 1, r0 >>= 1) {
            if (l0 & 1) apply(l0++, e);
            if (r0 & 1) apply(--r0, e);
        }
        pull(l);
        pull(r);
    }

    T fold() const { return data[1]; }
    T fold(int l, int r) {
        assert(0 <= l and l <= r and r <= internal_size);
        l += seg_size;
        r += seg_size;
        push(l);
        push(r);
        T ret_l = M::identity(), ret_r = M::identity();
        while (l < r) {
            if (l & 1) ret_l = M::operation(ret_l, data[l++]);
            if (r & 1) ret_r = M::operation(data[--r], ret_r);
            l >>= 1;
            r >>= 1;
        }
        return M::operation(ret_l, ret_r);
    }

    template <class F> int max_right(int l, const F& f) {
        assert(0 <= l and l <= internal_size);
        assert(f(M::identity()));
        if (l == internal_size) return internal_size;
        l += seg_size;
        for (const int d : revrep(1, logn + 1)) flush(l >> d);
        T sum = M::identity();
        do {
            while (!(l & 1)) l >>= 1;
            if (!f(M::operation(sum, data[l]))) {
                while (l < seg_size) {
                    flush(l);
                    l = 2 * l;
                    if (f(M::operation(sum, data[l]))) sum = M::operation(sum, data[l++]);
                }
                return l - seg_size;
            }
            sum = M::operation(sum, data[l++]);
        } while ((l & -l) != l);
        return internal_size;
    }

    template <class F> int min_left(int r, const F& f) {
        assert(0 <= r and r <= internal_size);
        assert(f(M::identity()));
        if (r == 0) return 0;
        r += seg_size;
        for (const int d : revrep(1, logn + 1)) flush((r - 1) >> d);
        T sum = M::identity();
        do {
            r -= 1;
            while (r > 1 and (r & 1)) r >>= 1;
            if (!f(M::operation(data[r], sum))) {
                while (r < seg_size) {
                    flush(r);
                    r = 2 * r + 1;
                    if (f(M::operation(data[r], sum))) sum = M::operation(data[r--], sum);
                }
                return r + 1 - seg_size;
            }
            sum = M::operation(data[r], sum);
        } while ((r & -r) != r);
        return 0;
    }
};
#line 2 "container/lazy_segment_tree.cpp"
#include <cassert>
#include <vector>
#line 2 "internal/enable_avx2.cpp"

#ifdef ENABLE_AVX2
#define TARGET_AVX2 __attribute__((target("avx2")))
#else
#define TARGET_AVX2
#endif
#line 2 "utility/int_alias.cpp"
#include <cstdint>

using i32 = std::int32_t;
using u32 = std::uint32_t;
using i64 = std::int64_t;
using u64 = std::uint64_t;
using i128 = __int128_t;
using u128 = __uint128_t;
#line 4 "utility/countl_zero.cpp"

TARGET_AVX2 constexpr int countl_zero(u64 x) {
#ifdef __GNUC__
    return x == 0 ? 64 : __builtin_clzll(x);
#else
    x |= x >> 1;
    x |= x >> 2;
    x |= x >> 4;
    x |= x >> 8;
    x |= x >> 16;
    x |= x >> 32;
    return 64 - countr_zero(~x);
#endif
}
#line 4 "utility/bit_width.cpp"

TARGET_AVX2 constexpr int bit_width(const u64 x) { return 64 - countl_zero(x); }
#line 5 "utility/ceil_log2.cpp"

TARGET_AVX2 constexpr int ceil_log2(const u64 x) {
#ifdef __GNUC__
    return x == 0 ? 0 : bit_width(x - 1);
#else
    int e = 0;
    while (((u64)1 << e) < x) ++e;
    return e;
#endif
}
#line 2 "utility/countr_zero.cpp"
#include <array>
#line 5 "utility/countr_zero.cpp"

constexpr int countr_zero(u64 x) {
    if (x == 0) return 64;
#ifdef __GNUC__
    return __builtin_ctzll(x);
#else
    constexpr std::array<int, 64> table = {0,  1,  2,  7,  3,  13, 8,  27, 4,  33, 14, 36, 9,  49, 28, 19,
                                             5,  25, 34, 17, 15, 53, 37, 55, 10, 46, 50, 39, 29, 42, 20, 57,
                                             63, 6,  12, 26, 32, 35, 48, 18, 24, 16, 52, 54, 45, 38, 41, 56,
                                             62, 11, 31, 47, 23, 51, 44, 40, 61, 30, 22, 43, 60, 21, 59, 58};
    return table[(x & (~x + 1)) * 0x218A7A392DD9ABF >> 58 & 0x3F];
#endif
}
#line 2 "utility/rep.cpp"
#include <algorithm>

class Range {
    struct Iter {
        int itr;
        constexpr Iter(const int pos) noexcept : itr(pos) {}
        constexpr void operator++() noexcept { ++itr; }
        constexpr bool operator!=(const Iter& other) const noexcept { return itr != other.itr; }
        constexpr int operator*() const noexcept { return itr; }
    };
    const Iter first, last;

  public:
    explicit constexpr Range(const int first, const int last) noexcept : first(first), last(std::max(first, last)) {}
    constexpr Iter begin() const noexcept { return first; }
    constexpr Iter end() const noexcept { return last; }
};

constexpr Range rep(const int l, const int r) noexcept { return Range(l, r); }
constexpr Range rep(const int n) noexcept { return Range(0, n); }
#line 3 "utility/revrep.cpp"

class ReversedRange {
    struct Iter {
        int itr;
        constexpr Iter(const int pos) noexcept : itr(pos) {}
        constexpr void operator++() noexcept { --itr; }
        constexpr bool operator!=(const Iter& other) const noexcept { return itr != other.itr; }
        constexpr int operator*() const noexcept { return itr; }
    };
    const Iter first, last;

  public:
    explicit constexpr ReversedRange(const int first, const int last) noexcept
        : first(last - 1), last(std::min(first, last) - 1) {}
    constexpr Iter begin() const noexcept { return first; }
    constexpr Iter end() const noexcept { return last; }
};

constexpr ReversedRange revrep(const int l, const int r) noexcept { return ReversedRange(l, r); }
constexpr ReversedRange revrep(const int n) noexcept { return ReversedRange(0, n); }
#line 8 "container/lazy_segment_tree.cpp"

template <class A> class LazySegmentTree {
    using M = typename A::Monoid;
    using E = typename A::Effector;
    using T = typename M::Type;
    using U = typename E::Type;
    int internal_size, logn, seg_size;
    std::vector<T> data;
    std::vector<U> lazy;

    void fetch(const int k) { data[k] = M::operation(data[2 * k], data[2 * k + 1]); }
    void apply(const int k, const U& e) {
        data[k] = A::operation(data[k], e);
        if (k < seg_size) lazy[k] = E::operation(lazy[k], e);
    }
    void flush(const int k) {
        apply(2 * k, lazy[k]);
        apply(2 * k + 1, lazy[k]);
        lazy[k] = E::identity();
    }

    void push(const int k) {
        for (const int d : revrep(countr_zero(k) + 1, logn + 1)) flush(k >> d);
    }
    void pull(int k) {
        for (k >>= countr_zero(k); k > 1;) fetch(k >>= 1);
    }

  public:
    explicit LazySegmentTree(const int size = 0, const T& value = M::identity())
        : LazySegmentTree(std::vector<T>(size, value)) {}
    explicit LazySegmentTree(const std::vector<T>& vec) : internal_size(vec.size()) {
        logn = ceil_log2(internal_size);
        seg_size = 1 << logn;
        data = std::vector<T>(2 * seg_size, M::identity());
        lazy = std::vector<U>(seg_size, E::identity());
        for (const int i : rep(internal_size)) data[seg_size + i] = vec[i];
        for (const int i : revrep(1, seg_size)) fetch(i);
    }

    int size() const { return internal_size; }

    void assign(int i, const T& value) {
        assert(0 <= i and i < internal_size);
        i += seg_size;
        for (const int d : revrep(1, logn + 1)) flush(i >> d);
        data[i] = value;
        for (const int d : rep(1, logn + 1)) fetch(i >> d);
    }
    void operate(int l, int r, const U& e) {
        assert(0 <= l and l <= r and r <= internal_size);
        l += seg_size;
        r += seg_size;
        push(l);
        push(r);
        for (int l0 = l, r0 = r; l0 < r0; l0 >>= 1, r0 >>= 1) {
            if (l0 & 1) apply(l0++, e);
            if (r0 & 1) apply(--r0, e);
        }
        pull(l);
        pull(r);
    }

    T fold() const { return data[1]; }
    T fold(int l, int r) {
        assert(0 <= l and l <= r and r <= internal_size);
        l += seg_size;
        r += seg_size;
        push(l);
        push(r);
        T ret_l = M::identity(), ret_r = M::identity();
        while (l < r) {
            if (l & 1) ret_l = M::operation(ret_l, data[l++]);
            if (r & 1) ret_r = M::operation(data[--r], ret_r);
            l >>= 1;
            r >>= 1;
        }
        return M::operation(ret_l, ret_r);
    }

    template <class F> int max_right(int l, const F& f) {
        assert(0 <= l and l <= internal_size);
        assert(f(M::identity()));
        if (l == internal_size) return internal_size;
        l += seg_size;
        for (const int d : revrep(1, logn + 1)) flush(l >> d);
        T sum = M::identity();
        do {
            while (!(l & 1)) l >>= 1;
            if (!f(M::operation(sum, data[l]))) {
                while (l < seg_size) {
                    flush(l);
                    l = 2 * l;
                    if (f(M::operation(sum, data[l]))) sum = M::operation(sum, data[l++]);
                }
                return l - seg_size;
            }
            sum = M::operation(sum, data[l++]);
        } while ((l & -l) != l);
        return internal_size;
    }

    template <class F> int min_left(int r, const F& f) {
        assert(0 <= r and r <= internal_size);
        assert(f(M::identity()));
        if (r == 0) return 0;
        r += seg_size;
        for (const int d : revrep(1, logn + 1)) flush((r - 1) >> d);
        T sum = M::identity();
        do {
            r -= 1;
            while (r > 1 and (r & 1)) r >>= 1;
            if (!f(M::operation(data[r], sum))) {
                while (r < seg_size) {
                    flush(r);
                    r = 2 * r + 1;
                    if (f(M::operation(data[r], sum))) sum = M::operation(data[r--], sum);
                }
                return r + 1 - seg_size;
            }
            sum = M::operation(data[r], sum);
        } while ((r & -r) != r);
        return 0;
    }
};
Back to top page