This documentation is automatically generated by online-judge-tools/verification-helper
#pragma once
#include <vector>
#include "../math/mod_inv.cpp"
#include "../math/rem_euclid.cpp"
#include "../utility/int_alias.cpp"
#include "../utility/rep.cpp"
#include "convolution_mod.cpp"
template <class T>
std::vector<T> convolution_arbitrary_mod(const std::vector<T>& a, const std::vector<T>& b, const T& mod) {
const int n = a.size(), m = b.size();
if (n == 0 || m == 0) return {};
static constexpr u64 MOD1 = 754974721, MOD2 = 167772161, MOD3 = 469762049;
static constexpr u64 M1M2 = MOD1 * MOD2;
static constexpr u64 I2 = mod_inv(MOD1, MOD2);
static constexpr u64 I3 = mod_inv(M1M2, MOD3);
std::vector<T> c1 = convolution_mod<T, MOD1>(a, b);
std::vector<T> c2 = convolution_mod<T, MOD2>(a, b);
std::vector<T> c3 = convolution_mod<T, MOD3>(a, b);
std::vector<T> c(n + m - 1);
for (const int i : rep(n + m - 1)) {
const u32 x = c1[i];
const u64 y = (u64)(c2[i] + MOD2 - x % MOD2) * I2 % MOD2 * MOD1 + x;
c[i] = ((u128)(c3[i] + MOD3 - y % MOD3) * I3 % MOD3 * M1M2 + y) % mod;
}
return c;
}
template <class M> std::vector<M> convolution_arbitrary_mod(const std::vector<M>& a, const std::vector<M>& b) {
const int n = a.size(), m = b.size();
if (n == 0 || m == 0) return {};
std::vector<u32> a2(n), b2(m);
for (const int i : rep(n)) a2[i] = a[i].val();
for (const int i : rep(m)) b2[i] = b[i].val();
std::vector<u32> c2 = convolution_arbitrary_mod(a2, b2, M::mod());
std::vector<M> c(n + m - 1);
for (const int i : rep(n + m - 1)) c[i] = c2[i];
return c;
}
#line 2 "algorithm/convolution_arbitrary_mod.cpp"
#include <vector>
#line 2 "math/mod_inv.cpp"
#include <cassert>
#line 2 "math/inv_gcd.cpp"
#include <type_traits>
#include <utility>
#line 3 "math/rem_euclid.cpp"
template <class T> constexpr T rem_euclid(T value, const T& mod) {
assert(mod > 0);
return (value %= mod) >= 0 ? value : value + mod;
}
#line 5 "math/inv_gcd.cpp"
template <class T> constexpr std::pair<T, T> inv_gcd(const T& a, const T& b) {
using U = std::make_signed_t<T>;
U t = rem_euclid(a, b);
if (t == 0) return {b, 0};
U s = b, m0 = 0, m1 = 1;
while (t != 0) {
const U u = s / t;
s -= t * u;
m0 -= m1 * u;
U tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
if (m0 < 0) m0 += b / s;
return {(T)s, (T)m0};
}
#line 4 "math/mod_inv.cpp"
template <class T> constexpr T mod_inv(const T& a, const T& mod) {
const auto [g, x] = inv_gcd(a, mod);
assert(g == 1);
return x;
}
#line 2 "utility/int_alias.cpp"
#include <cstdint>
using i32 = std::int32_t;
using u32 = std::uint32_t;
using i64 = std::int64_t;
using u64 = std::uint64_t;
using i128 = __int128_t;
using u128 = __uint128_t;
#line 2 "utility/rep.cpp"
#include <algorithm>
class Range {
struct Iter {
int itr;
constexpr Iter(const int pos) noexcept : itr(pos) {}
constexpr void operator++() noexcept { ++itr; }
constexpr bool operator!=(const Iter& other) const noexcept { return itr != other.itr; }
constexpr int operator*() const noexcept { return itr; }
};
const Iter first, last;
public:
explicit constexpr Range(const int first, const int last) noexcept : first(first), last(std::max(first, last)) {}
constexpr Iter begin() const noexcept { return first; }
constexpr Iter end() const noexcept { return last; }
};
constexpr Range rep(const int l, const int r) noexcept { return Range(l, r); }
constexpr Range rep(const int n) noexcept { return Range(0, n); }
#line 2 "internal/modulo_transform.cpp"
#include <array>
#line 3 "internal/barret_reduction.cpp"
namespace proconlib {
class BarretReduction {
u32 mod;
u64 near_inv;
public:
explicit constexpr BarretReduction(const u32 mod) noexcept : mod(mod), near_inv((u64)(-1) / mod + 1) {}
constexpr u32 product(const u32 a, const u32 b) const noexcept {
const u64 z = (u64)a * b;
const u64 x = ((u128)z * near_inv) >> 64;
const u32 v = z - x * mod;
return v < mod ? v : v + mod;
}
constexpr u32 get_mod() const noexcept { return mod; }
};
} // namespace proconlib
#line 7 "math/mod_pow.cpp"
template <class T> constexpr u32 mod_pow(T x, u64 exp, const u32 mod) {
assert(mod > 0);
if (mod == 1) return 0;
const proconlib::BarretReduction bt(mod);
u32 ret = 1, mul = rem_euclid<std::common_type_t<T, i64>>(x, mod);
for (; exp > 0; exp >>= 1) {
if (exp & 1) ret = bt.product(ret, mul);
mul = bt.product(mul, mul);
}
return ret;
}
#line 5 "math/primitive_root.cpp"
constexpr u32 primitive_root(const u32 mod) {
std::array<u32, 32> exp{};
u32 cur = mod - 1;
int size = 0;
for (u32 i = 2; i * i <= cur; ++i) {
if (cur % i == 0) {
exp[size++] = (mod - 1) / i;
while (cur % i == 0) cur /= i;
}
}
if (cur != 1) exp[size++] = (mod - 1) / cur;
for (u32 check = 1; check < mod; ++check) {
for (const u32 e : exp) {
if (e == 0) return check;
if (mod_pow(check, e, mod) == 1) break;
}
}
return mod;
}
#line 2 "internal/enable_avx2.cpp"
#ifdef ENABLE_AVX2
#define TARGET_AVX2 __attribute__((target("avx2")))
#else
#define TARGET_AVX2
#endif
#line 5 "utility/countr_zero.cpp"
constexpr int countr_zero(u64 x) {
if (x == 0) return 64;
#ifdef __GNUC__
return __builtin_ctzll(x);
#else
constexpr std::array<int, 64> table = {0, 1, 2, 7, 3, 13, 8, 27, 4, 33, 14, 36, 9, 49, 28, 19,
5, 25, 34, 17, 15, 53, 37, 55, 10, 46, 50, 39, 29, 42, 20, 57,
63, 6, 12, 26, 32, 35, 48, 18, 24, 16, 52, 54, 45, 38, 41, 56,
62, 11, 31, 47, 23, 51, 44, 40, 61, 30, 22, 43, 60, 21, 59, 58};
return table[(x & (~x + 1)) * 0x218A7A392DD9ABF >> 58 & 0x3F];
#endif
}
#line 3 "utility/revrep.cpp"
class ReversedRange {
struct Iter {
int itr;
constexpr Iter(const int pos) noexcept : itr(pos) {}
constexpr void operator++() noexcept { --itr; }
constexpr bool operator!=(const Iter& other) const noexcept { return itr != other.itr; }
constexpr int operator*() const noexcept { return itr; }
};
const Iter first, last;
public:
explicit constexpr ReversedRange(const int first, const int last) noexcept
: first(last - 1), last(std::min(first, last) - 1) {}
constexpr Iter begin() const noexcept { return first; }
constexpr Iter end() const noexcept { return last; }
};
constexpr ReversedRange revrep(const int l, const int r) noexcept { return ReversedRange(l, r); }
constexpr ReversedRange revrep(const int n) noexcept { return ReversedRange(0, n); }
#line 9 "internal/modulo_transform.cpp"
namespace proconlib {
template <class M> struct ModuloTransform {
static constexpr u32 MOD = M::mod();
static constexpr u32 ROOT = primitive_root(MOD);
static constexpr int RANK = countr_zero(MOD - 1);
std::array<M, RANK + 1> root, iroot;
std::array<M, (RANK >= 2 ? RANK - 2 + 1 : 0)> rate2, irate2;
std::array<M, (RANK >= 3 ? RANK - 3 + 1 : 0)> rate3, irate3;
constexpr ModuloTransform() : root(), iroot(), rate2(), irate2(), rate3(), irate3() {
root[RANK] = M(ROOT).pow((MOD - 1) >> RANK);
iroot[RANK] = root[RANK].inv();
for (const int i : revrep(0, RANK)) {
root[i] = root[i + 1] * root[i + 1];
iroot[i] = iroot[i + 1] * iroot[i + 1];
}
M prod = 1, iprod = 1;
for (const int i : rep(2, RANK + 1)) {
rate2[i - 2] = root[i] * prod;
irate2[i - 2] = iroot[i] * iprod;
prod *= iroot[i];
iprod *= root[i];
}
prod = 1, iprod = 1;
for (const int i : rep(3, RANK + 1)) {
rate3[i - 3] = root[i] * prod;
irate3[i - 3] = iroot[i] * iprod;
prod *= iroot[i];
iprod *= root[i];
}
}
void butterfly(std::vector<M>& a) const {
const int n = a.size();
const int h = countr_zero(n);
for (int len = 0; len < h;) {
if (len + 1 == h) {
M rot = 1;
for (const int s : rep(0, 1 << len)) {
const int t = s << 1;
const M l = a[t], r = a[t + 1] * rot;
a[t] = l + r;
a[t + 1] = l - r;
if (((s + 1) >> len) == 0) rot *= rate2[countr_zero(~s)];
}
len += 1;
} else {
const int p = 1 << (h - len - 2);
M rot = 1;
for (const int s : rep(0, 1 << len)) {
const int t = s << (h - len);
const M rot2 = rot * rot;
const M rot3 = rot2 * rot;
for (const int i : rep(0, p)) {
const M a0 = a[i + t];
const M a1 = a[i + t + p] * rot;
const M a2 = a[i + t + p * 2] * rot2;
const M a3 = a[i + t + p * 3] * rot3;
const M ax = (a1 - a3) * root[2];
a[i + t] = a0 + a1 + a2 + a3;
a[i + t + p] = a0 - a1 + a2 - a3;
a[i + t + p * 2] = a0 - a2 + ax;
a[i + t + p * 3] = a0 - a2 - ax;
}
if (((s + 1) >> len) == 0) rot *= rate3[countr_zero(~s)];
}
len += 2;
}
}
}
void butterfly_inv(std::vector<M>& a) const {
const int n = a.size();
const int h = countr_zero(n);
for (int len = h; len > 0;) {
if (len == 1) {
const int p = n >> 1;
for (const int i : rep(0, p)) {
const M l = a[i], r = a[i + p];
a[i] = l + r;
a[i + p] = l - r;
}
len -= 1;
} else {
const int p = 1 << (h - len);
M rot = 1;
for (const int s : rep(0, 1 << (len - 2))) {
const int t = s << (h - len + 2);
const M rot2 = rot * rot;
const M rot3 = rot2 * rot;
for (const int i : rep(0, p)) {
const M a0 = a[i + t];
const M a1 = a[i + t + p];
const M a2 = a[i + t + p * 2];
const M a3 = a[i + t + p * 3];
const M ax = (a2 - a3) * iroot[2];
a[i + t] = a0 + a1 + a2 + a3;
a[i + t + p] = (a0 - a1 + ax) * rot;
a[i + t + p * 2] = (a0 + a1 - a2 - a3) * rot2;
a[i + t + p * 3] = (a0 - a1 - ax) * rot3;
}
if (((s + 1) >> (len - 2)) == 0) rot *= irate3[countr_zero(~s)];
}
len -= 2;
}
}
}
};
} // namespace proconlib
#line 2 "math/static_modint.cpp"
#include <ostream>
#line 2 "math/totient.cpp"
template <class T> constexpr T totient(T x) {
T ret = x;
for (T i = 2; i * i <= x; ++i) {
if (x % i == 0) {
ret /= i;
ret *= i - 1;
while (x % i == 0) x /= i;
}
}
if (x > 1) {
ret /= x;
ret *= x - 1;
}
return ret;
}
#line 7 "math/static_modint.cpp"
template <u32 MOD, std::enable_if_t<((u32)1 <= MOD and MOD <= ((u32)1 << 31))>* = nullptr> class StaticModint {
using Self = StaticModint;
static inline constexpr u32 PHI = totient(MOD);
u32 v;
public:
static constexpr u32 mod() noexcept { return MOD; }
template <class T, std::enable_if_t<std::is_integral_v<T>>* = nullptr>
static constexpr T normalize(const T& x) noexcept {
return rem_euclid<std::common_type_t<T, i64>>(x, MOD);
}
constexpr StaticModint() noexcept : v(0) {}
template <class T> constexpr StaticModint(const T& x) noexcept : v(normalize(x)) {}
template <class T> static constexpr Self raw(const T& x) noexcept {
Self ret;
ret.v = x;
return ret;
}
constexpr u32 val() const noexcept { return v; }
constexpr Self neg() const noexcept { return raw(v == 0 ? 0 : MOD - v); }
constexpr Self inv() const noexcept { return pow(PHI - 1); }
constexpr Self pow(u64 exp) const noexcept {
Self ret(1), mult(*this);
for (; exp > 0; exp >>= 1) {
if (exp & 1) ret *= mult;
mult *= mult;
}
return ret;
}
constexpr Self operator-() const noexcept { return neg(); }
constexpr Self operator~() const noexcept { return inv(); }
constexpr Self operator+(const Self& rhs) const noexcept { return Self(*this) += rhs; }
constexpr Self& operator+=(const Self& rhs) noexcept {
if ((v += rhs.v) >= MOD) v -= MOD;
return *this;
}
constexpr Self operator-(const Self& rhs) const noexcept { return Self(*this) -= rhs; }
constexpr Self& operator-=(const Self& rhs) noexcept {
if (v < rhs.v) v += MOD;
v -= rhs.v;
return *this;
}
constexpr Self operator*(const Self& rhs) const noexcept { return Self(*this) *= rhs; }
constexpr Self& operator*=(const Self& rhs) noexcept {
v = (u64)v * rhs.v % MOD;
return *this;
}
constexpr Self operator/(const Self& rhs) const noexcept { return Self(*this) /= rhs; }
constexpr Self& operator/=(const Self& rhs) noexcept { return *this *= rhs.inv(); }
constexpr bool operator==(const Self& rhs) const noexcept { return v == rhs.v; }
constexpr bool operator!=(const Self& rhs) const noexcept { return v != rhs.v; }
friend std::ostream& operator<<(std::ostream& stream, const Self& rhs) { return stream << rhs.v; }
};
using Modint1000000007 = StaticModint<1000000007>;
using Modint998244353 = StaticModint<998244353>;
#line 4 "utility/countl_zero.cpp"
TARGET_AVX2 constexpr int countl_zero(u64 x) {
#ifdef __GNUC__
return x == 0 ? 64 : __builtin_clzll(x);
#else
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
x |= x >> 32;
return 64 - countr_zero(~x);
#endif
}
#line 4 "utility/bit_width.cpp"
TARGET_AVX2 constexpr int bit_width(const u64 x) { return 64 - countl_zero(x); }
#line 5 "utility/ceil_log2.cpp"
TARGET_AVX2 constexpr int ceil_log2(const u64 x) {
#ifdef __GNUC__
return x == 0 ? 0 : bit_width(x - 1);
#else
int e = 0;
while (((u64)1 << e) < x) ++e;
return e;
#endif
}
#line 9 "algorithm/convolution_mod.cpp"
namespace proconlib {
template <class T> std::vector<T> convolution_naive(const std::vector<T>& a, const std::vector<T>& b) {
const int n = a.size(), m = b.size();
std::vector<T> c(n + m - 1);
if (n < m) {
for (const int j : rep(m))
for (const int i : rep(n)) c[i + j] += a[i] * b[j];
} else {
for (const int i : rep(n))
for (const int j : rep(m)) c[i + j] += a[i] * b[j];
}
return c;
}
template <class M> std::vector<M> convolution_ntt(std::vector<M> a, std::vector<M> b) {
constexpr ModuloTransform<M> transform;
const int n = a.size(), m = b.size();
const int k = 1 << ceil_log2(n + m - 1);
a.resize(k), b.resize(k);
transform.butterfly(a);
transform.butterfly(b);
for (const int i : rep(k)) a[i] *= b[i];
transform.butterfly_inv(a);
a.resize(n + m - 1);
const M c = M(k).inv();
for (const int i : rep(n + m - 1)) a[i] *= c;
return a;
}
} // namespace proconlib
template <class M> std::vector<M> convolution_mod(std::vector<M>&& a, std::vector<M>&& b) {
const int n = a.size(), m = b.size();
if (n == 0 || m == 0) return {};
if (std::min(n, m) <= 60) return proconlib::convolution_naive(a, b);
return proconlib::convolution_ntt(std::move(a), std::move(b));
}
template <class M> std::vector<M> convolution_mod(const std::vector<M>& a, const std::vector<M>& b) {
const int n = a.size(), m = b.size();
if (n == 0 || m == 0) return {};
if (std::min(n, m) <= 60) return proconlib::convolution_naive(a, b);
return proconlib::convolution_ntt(a, b);
}
template <class T, u32 MOD, std::enable_if_t<std::is_integral_v<T>>* = nullptr>
std::vector<T> convolution_mod(const std::vector<T>& a, const std::vector<T>& b) {
const int n = a.size(), m = b.size();
if (n == 0 || m == 0) return {};
using M = StaticModint<MOD>;
std::vector<M> a2(n), b2(m);
for (const int i : rep(n)) a2[i] = a[i];
for (const int i : rep(m)) b2[i] = b[i];
std::vector<M> c2 = convolution_mod(std::move(a2), std::move(b2));
std::vector<T> c(n + m - 1);
for (const int i : rep(n + m - 1)) c[i] = c2[i].val();
return c;
}
#line 8 "algorithm/convolution_arbitrary_mod.cpp"
template <class T>
std::vector<T> convolution_arbitrary_mod(const std::vector<T>& a, const std::vector<T>& b, const T& mod) {
const int n = a.size(), m = b.size();
if (n == 0 || m == 0) return {};
static constexpr u64 MOD1 = 754974721, MOD2 = 167772161, MOD3 = 469762049;
static constexpr u64 M1M2 = MOD1 * MOD2;
static constexpr u64 I2 = mod_inv(MOD1, MOD2);
static constexpr u64 I3 = mod_inv(M1M2, MOD3);
std::vector<T> c1 = convolution_mod<T, MOD1>(a, b);
std::vector<T> c2 = convolution_mod<T, MOD2>(a, b);
std::vector<T> c3 = convolution_mod<T, MOD3>(a, b);
std::vector<T> c(n + m - 1);
for (const int i : rep(n + m - 1)) {
const u32 x = c1[i];
const u64 y = (u64)(c2[i] + MOD2 - x % MOD2) * I2 % MOD2 * MOD1 + x;
c[i] = ((u128)(c3[i] + MOD3 - y % MOD3) * I3 % MOD3 * M1M2 + y) % mod;
}
return c;
}
template <class M> std::vector<M> convolution_arbitrary_mod(const std::vector<M>& a, const std::vector<M>& b) {
const int n = a.size(), m = b.size();
if (n == 0 || m == 0) return {};
std::vector<u32> a2(n), b2(m);
for (const int i : rep(n)) a2[i] = a[i].val();
for (const int i : rep(m)) b2[i] = b[i].val();
std::vector<u32> c2 = convolution_arbitrary_mod(a2, b2, M::mod());
std::vector<M> c(n + m - 1);
for (const int i : rep(n + m - 1)) c[i] = c2[i];
return c;
}